If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3z^2=155
We move all terms to the left:
3z^2-(155)=0
a = 3; b = 0; c = -155;
Δ = b2-4ac
Δ = 02-4·3·(-155)
Δ = 1860
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1860}=\sqrt{4*465}=\sqrt{4}*\sqrt{465}=2\sqrt{465}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{465}}{2*3}=\frac{0-2\sqrt{465}}{6} =-\frac{2\sqrt{465}}{6} =-\frac{\sqrt{465}}{3} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{465}}{2*3}=\frac{0+2\sqrt{465}}{6} =\frac{2\sqrt{465}}{6} =\frac{\sqrt{465}}{3} $
| A=1/2(6x^2+12x) | | 6x-12=9x-5 | | 3.6-y=4 | | -6x-8.4=-5x-25.4 | | (2x+14)+(x+17)=90 | | -(-3-q)=1/2(6q-26) | | 5-2-10=5y+18 | | 2/6p-19=-9 | | 5x+10=3x-7 | | 40*n=6 | | -4(3x+1)-(x-2)=-11 | | x2+5=18 | | 4n-4=132 | | X2+8x+16=16/9 | | 6x-10=5x+30 | | 4n-3=-47 | | 48=17u-9u | | 13+5(8k+3)+4(5-9k)=4K+6 | | 10-10(-8k+4)=10 | | 8x-7=367 | | 3+x²+2x-8=7 | | n+2|=1 | | y/2=128 | | -17n=-238 | | 29=4c+9 | | R+r+r+r+r=25 | | 5x+30=4x+10 | | 79-x+3x+25=180 | | 10-10|-8k+4|=10 | | 3/2=5d—1/2 | | 2p-10-4p-7=0 | | 2x-8=58 |